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Abstract

The goal of our project is to align 3D models of chairs to 2D scene images con-
taining chairs. In order to solve the alignment problem, we need to determine
the translation, scale and rotation of the 3D object that maps it to the 2D image.
For the purposes of this project we limit the scope to only azimuth orientation.
We train a convolutional neural network on 64x64 rendered RGB chair images to
predict the orientation of a previously unseen input.

Our convolutional neural network consists of two convolutional layers with max
pooling and ReLLU activation functions and two fully connected layers also with
ReLU activation functions. This simple architecture yielded surprisingly good
results giving us 99% precision on the testing set.

We evaluate the model on both a set of clean product images obtained from Bing
and on cluttered natural images from the PASCAL VOC dataset and present a
webcam interface that predicts chair orientation at interactive rates.

1 Introduction

We attempt to solve the 2D-3D alignment problem for objects in a given image. The general problem
is described as follows: Given a single image and a large collection of 3D object models, can we
find the optimal style and alignment (rotation, scale, translation) of a model that best explains the
object seen in the image.

Since there are an arbitrarily large number objects possible in a natural scene, we will initially
focus our efforts on one object class: chairs. Chairs commonly occur in indoor scenes and exhibit
interesting variance in style and function. Chairs are also convenient since there already exists a
large number of 3D models online, which we can use to train our model.

For the purposes of this project, we model only the rotation around the vertical axis (azimuth) and
train a classifier that predicts the azimuth given a previously unseen test example. This is fairly
challenging by itself. Our approach should also generalize to elevation and roll angles, but we pick
azimuth, since it is the most frequently varying component in chair images. Variation in elevation is
generally limited since photographs are taken from eye level and roll is limited since the camera’s
vertical axis usually aligns with gravity. However, exceptions do exist, as we have observed in real
data.

Our test data includes both withheld training data and natural images downloaded from the Inter-
net. Within images downloaded from the Internet, we have sub-classes of images that have a clean
background (product images from Bing.com) and images that are more naturally captured (PASCAL
VOC)

We train a simple convolutional neural network to model the data. For training we utilize a pub-
licly available dataset [1]] of pre-rendered 3D chair models. Each rendered 600x600px image is
labeled with {chairtype, azimuth, elevation}. Details of our data processing and model training
are described in following sections.



We finally demonstrate that our trained model is able to detect the orientations of chairs from natural
images and from a webcam stream at interactive rates.

2 Related Work

Our training data is obtained from Aubry et. al. [1l], who use parts-based correspondence with
discriminative histogram of gradients (HOG) features that are computed with linear discriminant
analysis (LDA). Our approach differs in that we are training a convNet that learns the feature weights
via backpropogation.

Huang et. al. [2] reconstruct a representation of the chair by jointly analyzing a product-catalog
style image and a deformable 3D model. Their test images are restricted to well-cropped, noise
free images whereas we intend to test our approach using convolution on natrual images with more
clutter and noise.

Satkin et. al. [3] and Hedau et. el. [4] use a comparable approach to model indoor scenes using
a database of 3D models. While these systems work on more general scenes, they include several
strong priors, such as visible vanishing points, manhattan alignment etc., in order to make assertions
about the position and orientation of objects. Our model while restricted to a single object class, is
designed to be more general.

Dosovitskiy et. al. [S]] share insights on the inner workings of Neural Networks while analyzing
chairs. By studying the output of hidden layers, they are able to generate new chair models that
morph between training examples, but are otherwise previously unseen. The insight from this paper
may inform the design of our neural network architecture.

3 Training Data

Our training data is obtained from [[1]] and consists of a set of pre-rendered chair models. There
are 1398 distinct models with 31 discretized azimuth angles and 2 elevation angles, totaling 86,676
images. Of this, we withhold 18,476 images as our validation set.

The chairs are randomly shuffled and the images are cropped to remove any white-space. The
images are then resized to 64x64 pixels, which was determined to be the optimal size for training
that maintains image quality while converging in a reasonable time-frame (roughly 8 hours). The
chairs are also whitened per-image so each image has zero mean and unit variance.

Finally, we additionally apply random brightness and contrast changes to each image. This is in
order to account for varying image/lighting conditions and to artificially increase the data set size.
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Figure 1: A sample of the 3D models we have available.
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Figure 2: We render each model from 31 different azimuth angles and 2 elevation angles.



4 CNN Architecture
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Figure 3: An illustration of our simple CNN architecture.

We use a simple convolutional neural network with a input layer of size 64x64x3 (our code allows
for an input of any size which is then just shrunk by the max-pooling layer). The two convolutional
layers have filters of size 5x5 and stride 1 with a depth of 64. Each convolutional layer is followed
by a 3x3 max-pooling layer with stride 2 which shrinks the input size from in half (e.g. 64x64 to
32x32) and have rectified linear units (ReLU) as the non-linearity.

The ReLUs are simply given by:
f(x) = max(0, z)

The above ReLLU function has empirically been shown to work better than other non-linearities in
some neural network tasks. [|6]

The convolutional layers are followed by a dense connection to a fully connected layer. We have
two fully conected layers which are also activated by ReL.Us.

The final output layer outputs confidence scores for 31 different classes which each correspond to
one azimuth angle.

We train the network end-to-end with the 64x64 rendered RGB image as an input and the azimuth
class as an output with the loss being the cross entropy between the ground truth and the output. The
loss of our network is thus given by the following:

Hy(5) =Y _ yilog i
i
where y is the set of our ground truth labels and 3 is the set of our predictions.

5 Model Training

We train our convolutional neural network on a set of 68,200 training images for 10000 iterations
using a stochastic gradient descent optimizer with a batch size of 7936 with a learning rate of 0.01.
We present our precision and loss by iteration in the following figures.

Our convolutional network was implemented with the recently released TensorFlow toolkit [7]. The
hardware used for network training is an Intel Xeon(R) CPU X5680 @ 3.33GHz x 24 cores, 64-bit
08, 23.5 GiB of Memory, GeForce GTX 750 Ti/PCle/SSE2 with 2048 MiB of graphics memory.

On the above hardware, our model takes about 8 hours to converge. Cross entropy and loss functions
are plotted below.
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Figure 4: Plots for training output v/s Iterations
6 Results

6.1 Quantitative Results

We evaluate our method quantitatively on a withheld testing set of rendered synthetic models which
have the same statistics as our training data and also on natural images of chairs gathered and cropped
from the PASCAL VOC challenge data set. For the PASCAL VOC data, we crop all objects labeled
‘chair’ that are annotated as non-difficult, non-occluded and non-truncated. This gives us 424 chair
images, which we then manually annotate with ground-truth azimuth angles.

| Precision — | P(l;ef;sli;)n
Training 0.99 Tgp 3 0' 37134
Testing 0.924 IS — :
: Incl. 1 adjacent | 0.2712
(a) Synthetic data (b) PASCAL VOC Data

Table 1: Precision results on synthetic and natural image data.

While our precision statistics on PASCAL VOC data is significantly (order of magnitude) better than
random chance, we still get relatively poor results on the dataset for several reasons.

Different statistics from training set Our training data is all cleanly cropped rendered chair im-
ages with white backgrounds. The PASCAL VOC dataset has very different statistics in that the
background is cluttered, the images have noise, the chairs are not necessarily perfectly cropped, the
lighting conditions may vary significantly, the chairs may be occluded by other objects including
other chairs, and there is no constraint on the orientation of the chairs (i.e. they may contain extreme
elevation and roll angles).
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Figure 5: Examples of difficult images in the PASCAL VOC dataset.



6.2 Qualitative Results

We also evaluate our model qualitatively on a dataset of clean product images collected from Bing.
These images are real images of chairs but have clean white backgrounds similar to our training
set. We did not have ground truth annotations for these images thus could only do a qualitative
examination but it looked to get over 90% of the orientations correct.
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Figure 6: Results of our method on clean product images obtained from Bing.

6.3 Detecting Chair Pose via Webcam

We have implemented a real-time system that detects the pose of a chair through a webcam video
stream. The system crops and resizes the image and then evaluates it using the trained network
model. The top 3 predicted orientation results are displayed pictorially with a generic chair model.

On the same hardware as we used for training, the webcam system runs at around 3 frames per
second. Interactively rotating the chair reflects in the predicted results based on our model. The
demo also has a the capability to run over RPC, so that a thin client can provide the webcam input
and the evaluation can be performed on a server, without sacrificing performance. Screenshots of
the interactive application are shown below.
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Figure 7: A chair captured in four different orientations via a webcam. On the right, our system
outputs the top three predictions for the azimuth orientation of the input chair.




7 Discussion and Future Work

Obtaining ground truth 3D labeling for natural images is hard. However, using synthetic 3D models
rendered from various angles can provide sufficient training data for this problem.

With a relatively simple two layer neural network, our model is able to predict the correct azimuth
class with 92.4% (17072 out of 18476 images) on the withheld data. It also performs significantly
better than guessing on PASCAL VOC data, although the results are not as accurate as clean product
images.

There are several improvements that should enhance the performance on real image data. The most
important improvement would be to train classifiers for elevation and roll angles as well. By adding
random backgrounds (of natural scenes, like homes, offices, outdoors) we can attempt to remove
the bias towards clean backgrounds. By introducing multi-scale training images, we can capture the
scale of the object (translation is already accounted for by the convolution).

Finally, training a classifier to detect the chair type (appearance) would be very useful. However,
this is a much more challenging problem since in our training set we have 1398 distinct chairs.
Correctly predicting 1 out of 1398 can be prone to noise. However, one possible solution is to create
sub-classes of chair types (Office chairs, sofas, dining room chairs etc.) and detect type within each
sub-class.
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